
Appendix D

A 1-D Diffusion Code Description

1 Requirements

The code solves the 1-D slab diffusion equation on [0, x0] with options for source or vacuum

boundary conditions at either face, reflective boundary conditions at the left face, and an

option for the FSDS technique with either isotropic or plane-wave boundary sources on

the right face. At least 2 distinct material regions must be allowed. Cross sections and

cell sizes may vary between regions, but they are constant within a region. Output must

include both the scalar fluxes, and all terms appearing in the global balance expression. We

assume a standard 1D grid with half-integral indexes at the cell faces and integral indices

at the cell centers. All problems must be scaled so that the total source rate is unity, i.e.,

j+
L + j−R +

N∑
i=1

qd,i hi = 1.0 , p/(cm2 − sec), (1)

where N denotes the total number of cells, and hi is the width of cell i.
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2 First-Scattered Distributed Sources

We want to apply the FSDS approximation in our diffusion code for two types of boundary

fluxes: isotropic and plane-wave.

2.1 Isotropic Case

The uncollided scalar flux for an incident isotropic boundary flux of φ0

2π
(p/cm2 − sec −

steradian) at x = x0 is given by

φ(x) = φ0E2 [σt(x0 − x)] , x ∈ [0, x0]. (2)

The first-scattered source for the diffusion equation is therefore

qf (x) = σsφ0E2 [σt(x0 − x)] . (3)

In order to maintain particle conservation, it is best to define the discrete source values as

follows:

qi =
1

hi

∫ xi+1/2

xi−1/2

q(x)dx . (4)

Calculating the discrete first-scattered source in accordance with Eq. (4), we get

qi =
1

2
σsφ0

1

hi

∫ xi+1/2

xi−1/2

E2 [σt(x0 − x)] dx . (5)

To evaluate this integral, we note that

d

dx
En(x) = −En−1(x) . (6)
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Let ξ = σt(x0 − x), then (4) can be expressed as follows:

qi =
σsφ0

σthi

∫ ξi−1/2

ξi+1/2

E2(ξ) dξ .

=
σsφ0

σthi

∣∣∣ξi+1/2

ξi−1/2
E3(ξ)

=
σsφ0

σthi

{
E3

[
σt(x0 − xi+1/2)

] − E3

[
σt(x0 − xi−1/2)

]}
. (7)

2.2 Plane-Wave Case

Given a plane-wave source of φ0

2π
δ(µ+1) p/(cm2 − sec− steradian), the uncollided scalar

flux is

φ(x) = φ0 exp [−σt(x0 − x)] , x ∈ [0, x0] . (8)

The first-scattered distributed source for the diffusion equation is therefore

qf (x) = σsφ0 exp [−σt(x0 − x)] (9)

Calculating the discrete first-scattered source in accordance with Eq. (4), we get

qi =
1

hi

∫ x0−xi−1/2

x0−xi+1/2

σsφ0 exp [−σt(x0 − x)] dx

=
σsφ0

σthi

{
exp

[−σt(x0 − xi+1/2)
] − exp

[−σt(x0 − xi−1/2)
]}

. (10)

3



3 Global Particle Balance

If we integrate the diffusion equation over [0, x0], we obtain a conservation expression for

the entire slab:

J(x0)− J(0) +
N∑

i=1

σa,iφihi =
N∑

i=1

qihi . (11)

The currents can be further broken down into inflows and outflows:

J(0) =

[
φ(0)

4
+

J(0)

2

]
−

[
φ(0)

4
− J(0)

2

]
, (12)

= j+
L − j−L ,

= (left inflow) - left(outflow) .

J(x0) =

[
φ(x0)

4
+

J(x0)

2

]
−

[
φ(x0)

4
− J(x0)

2

]
, (13)

= j+
R − j−R ,

= (right outflow) - (right inflow) .

Putting all the expressions together, we get

j+
R + j−L +

N∑
i=1

σa,iφihi = j+
L + j−R +

N∑
i=1

qihi . (14)

The left side of Eq. (14) represents sinks and the right side represents sources.

When the FSDS technique is being used, the corresponding balance expression is

(
j+
U,R + j+

C,R

)
+

(
j−U,L + j−C,L

)
+

N∑
i=1

σa,i (φU,i + φC,i)hi =
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(
j+
U,L + j+

C,L

)
+

(
j−U,R + j−C,R

)
+

N∑
i=1

qd,ihi , (15)

Where “U” denotes an uncollided quantity, “C” denotes a collided quantity, qd denotes

the explicit distributed source (excluding the first-scattered source), and φC,i denotes the

average uncollided flux in cell i:

φC,i =
1

hi

∫ xi+1/2

xi−1/2

φC(x) dx . (16)

Note that the uncollided partial currents, j+
C and j−C must be exactly evaluated by angular

integration of the boundary fluxes. Equations (12) and (13) apply to only the diffusion

solution and not to the uncollided flux solution.
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